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ABSTRACT

Project Pre-SCHOONER cénsisted of four ZO—tor-lbnitromethane
cratering detonations conducted by the Uﬁited States Army Engineer
Nuclear Crg’;gfing Group as part of the joint Atonﬁc Ener'gy; Commis-
sion-Corps of Engineers nuclear excava_tioﬁ rés»ea.rchv pro.gram- The
experiment ‘was conducted in February 1964 in the ‘bla.sa_ltbo,f B}lckf
board Mesa at the Nevada Test Site. |

High speed photography and target markers were used to meas-
ure ground surface motions produced by each of the four detonations.
Analysis of the surface motion data indicated that spalling was the
principle crater-producing mechanism. The three detonations which
produced apparent craters did, however, show varying amounts of
second phase surface accelerations. Surface ground zero spall ve-
locities ranged from 100 fps for the detonation at a 66-foot burial

1/3

depth (scaled depth of 236 ft/kt ) to 170 fps for the detonation at

a 42-foot burial depth (scaled depth of 150 ft/kt!’ ),




ACKNOWLEDGMENTS

The authors wish to acknowledge the assistance of
Mr. Robert W. Terhune, Lawrence Radiation Laboratory,
Livermore, California, and Captain Kenneth L.. Larner,
U. S. Army Engineer Nuclear Cratering Group, Livermore,
California, in analysis of the surface motion data for the

Pre-SCHOONER events.

ii



CONTENTS

ABSTRACT.
ACKNOWLEDGMENTS
CHAPTER 1 - INTRODUCTION

1.1 Description of Experiment . .
1.2 Purpose of Experiment

Purpose of Surface Motion Studies .

1.4 Background
CHAPTER 2 - EXPERIMENTAL PROCEDURES

2.1 General

2.2 Data Analysis . . . . . . . .
CHAPTER 3 - RESULTS e e
Photography . . . . . . .
3.2 Alfa Detonation
Bravo Detonation. . o . . . .
4 Charlie Detonation . . . . ‘
3.5 Delta Detonation . . . . . . .

CHAPTER 4 - EVALUATION AND CONCLUSIONS

- 4,1 General . . . . . .
4.2 Comparison of Results Among the Four Detonations

4.3 Comparison of Pre-Schooner SGZ Velocities with
Those of Other Detonations . . . . .

CHAPTER 5 - RECOMMENDATIONS . . . . .
REFERENCES .

APPENDIX A - Pre-Schooner Technical Reports .

iii

‘Page

ii

(6 ) B Y O

13

13
14
18
25
31

- 36

36
36
39
42

44

45




CONTENTS (Continued)

TABLES

Photography Parameter for Pre-Schooner Detonations
Summary of Alfa Surface Velocity Data . . . .
Summary of Bravo Surface Velocity Data

Summary of Charlie Surface Velocity Data . . . .

Summary of Delta Surface Velocity Data .

FIGURES
. Pre-Schooner Site Location . . . . . . .
1.2 Pre-Schooner SGZ Locations . . . . . .
. Target Arrays and Camera Stations . . . . .
Surface Motion Target Designs . . . . . .

3.10

3.11
3.12
3.13
4.1
4.2

Alfa, Vertical Velocity Histories of the Surface Targets.
Alfa, Horizontal Velocity Histories of the Surface Targets
Alfa, Displacement Hodograph of the Surface Targets

Bravo, Vertical Velocity Histories of the Surface Targets

Bravo, Horizontal Velocity Histories of the Surface Targets .

Bravo, Displacement Hodograph of the Surface Targets .

Charlie, Vertical Velocity Histories of Surface Targets
(East - West Array) . . . . . . .

Charlie, Vertical Velocity Histories of Surface Targets
(North - South Array)

Charlie, Horizontal Velocity Histories of Surface Targets
(East - West Array)

Charlie, Displacement Hodograph of the Surface Targets
(East - West Array) . . . . . . . .

Delta, Vertical Velocity Histories of the Surface Targets
Delta, Horizontal Velocity Histories of the Surface Targets
Delta, Displacement Hodograph of the Surface Targets
Vertical Spall Velocity Versus Position Coordinates (R, ¢)

Comparison of Pre-Schooner SGZ Vertical Spall and
Peak Velocities with Those from Detonations in
Other Media .

iv

o woN

16
19
21
22
24

26

27

28

30
32
33
35
38

41



CHAPTER I

INTRODUCTION

1.1 DESCRIPTION OF EXPERIMENT

Project Pre-SCHOONER consisted of four 20-ton qhemical ex-
plosive cratering detonations in basalt conducted by the U. S. Army
Engineer Nuclear Cratering Group (NCG) a.s a part of the joint
Atomic Energy Commission-Corps of Engineers nuclear excavation '
research program. Pre-SCHOONER was executed in February 1964
at the Atomic Energy Commission's Nevada Test Site (Figure 1.1)
on Buckboard Mesa (Figure 1.2), the site of the earlier DANNY BOY
nuclear cratering detonation and the Project BUCKBOARD chemical
explosive cratering experiments. Subsequent to Pre-SCHOONER,
SULKY, a nuclear cratering detonation, and DUGOUT, a row crater-
ing experiment consisting of five chemical explosive charges, have
been executed at the same general site.

The Pre-SCHOONER detonations were executed as follows:

Event Date Time (PST) Coordinates (f’c)a

ALFA 6 February 1964 0816 E 589,719.22 N 855,128.76
BRAVO 13 February 1964 0820 E 595,560.92 N 851,996.96
CHARLIE 25 February 1964 1041 E 594,587.88 N 854,131,75
DELTA 27 February 1964 1018 E 592,410,46 N 858,091, 53
a Coordinates are Holmes and Narver NTS Grid

Detonation of the four 20-ton (nominal) spherical charges of

liquid explosive nitromethane (CH3 NOZ) results in craters with the

following dimensions:




LINCOLN
COUNTY
CLARK
COUNTY

—36°%45'

o
i

FRENCHMAN

LAKE Nh»
7

AMH  AYNOYIN

R, .
.
)
— & —
(;‘ \\\““~
*, ) %
= 2 B N =
2 =, £ ™ H e 2
9 S, z
i ¥ g — j
n Y e X u
= ] g "y — &
e |k N l% H 3 oI
= = 4 H
0w P i
I -:’— /”’ o I
b e @I 2 #
W g i ™ _ I
F3 R b -
qw o ol — “.\/
—af &
£
C._: .
.
o
\ Sk
‘ she > _
-

0
" s

" SCALE IN MILES'

"
[
SCALE IN MILES

-
oReno
AN

FIGURE 1.1 Pre-Schooner Site Location
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Energy Equivalent Depth of Apparent Crater Size

Event Tons (kt) Burst (ft) Radius (ft) Depth (ft)
ALFA 19. 625 0.02172 58.0 50.3 22.9
BRAVO 19,725 0.02184 50.2 49.0 25.5
CHARLIE 19. 920 0.02205 66.1 a -1.3%
DELTA 19,795 0.02191 41.8 46.1 25.6

2CHARLIE produced a rubble mound entirely above the preshot surface.

1.2 PURPOSE OF THE EXPERIMENT

The specific objectives of Project Pre-SCHOONER were:

a. To improve the knowledge of and ability to predict various para-
meters associated with crater formation in a hard, dry, inert rock
material as a function of charge size and depth of burst. These para-
meters include crater dimensions, surface motions, seismic effects
and cloud development.

b. To contribute data for use in the design of future HE and
nuclear cratering experiments.

c. To provide information on the nature, configuration and ex-
tent of the true crater, upthrust, rupture and plastic zones of craters
in rock for the study of slope stability and other engineering properties

of explosively-produced craters.

1.3 PURPOSE OF SURFACE MOTION STUDIES

Previously, ground surface motion resulting from subsurface
detonations has been studied to develop a better understanding of
cratering phenomena and to provide general diagnostic information

concerning cratering physics. The Pre-SCHOONER series offered




the opportunity to obtain detailed surface motion measurements for
four 20-ton detonations at varying depths of burst in Buckboard

basalt.

1.4 BACKGROUND

Surface motion studies of single and row’ charge cratering events
in alluvium, basalt, rhyolite, and shale have led to a general under-
standing of surface motion phenomena in these media. Detailed in-
formation pertaining to single-charge detonations in basalt in the
yield range higher than the 20-ton level was limited prior to Pre-
SCHOONER. Only Project Buckboardz, a series of ten 1, 000-pound
TNT charge detonations and three 20-ton TNT charge detonations,
and DANNY BOY 1, a 0.42 kt nuclear cratering detonation, had
yielded surface motion data in basalt prior to Pre-SCHOONER. Sub-
sequent to Pre-SCHOONER, surface motion data have been obtained
for basalt on SULKY 3, a 0.085 kt nuclear cratering detonation, and
DUGOUT4, a row-charge cratering detonation consisting of five
20-ton chemical charges.

On Projects BUCKBOARD and DANNY BOY, limited surface
motion data was obtained. Only SGZ velocities were obtained for
the three 20-ton detonations on Project BUCKBOARD2 and these
were measured for only a brief interval after zero-time because of
early massive venting, On DANNY BOY, a peak SGZ velocity of
45 m/sec was obtained by tracking the top of the rising mound at late
times (>200 msec). Project Pre-SCHOONER, therefore, presented

the first opportunity to obtain detailed surface motion data for basalt

for detonations at varying depths of burst.
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Two crater formation phenomena are of interest in describing
surface motion produced by a cratering detonation: spall and gas
acceleration. Surface movement from spall, resulting from stress
wave reflection at the surface, begins at a relatively early time;
e.g., prior to 30 msec for DUGOUT. Following the spall velocity
peak, there is usually a second and more gradual rise in velocity
due to ''gas acceleration" by the expanding gas cavity. This second
increase, however, may be a relatively minor one, especially in dry,
hard rock. Gas acceleration for DUGOUT began at 30 msec and
peaked at 120 msec after the detonation 4, The peak velocity pro-
duced by the gas acceleration phase is the maximum velocity after
which, in the absence of venting, particles assume freefall

trajectories,




CHAPTER 2

EXPERIMENTAL PROCEDURES

2.1 GENERAL

The basic technique used to obtain surface motion data for each
of the four Pre-SCHOONER detonations involved high-speed photog-
raphy of orthogonal arrays of surface targets located across the pre-
dicted crater area. Films from the high-speed photography were
analyzed by various methods to determine displacement and velocity
histories of the surface targets.

Figure 2.1 shows the target arrays and camera lines of sight
and distances for each of the four Pre-SCHOONER detonations. Tar-
gets farther than 75 feet from SGZ were to serve as fixed reference
targets. For the CHARLIE and DELTA events, additional reference
targets were placed 300 feet from ground zero and 50 feet to either
side of the line of sight to the close-in camera bunker. This was
done to permit a more limited field of view in the photography.

Figure 2.2 shows the target designs. The SGZ target for each
event consisted of two panels so that it could be seen from two dir-
ecions., The post for this target consisted of two 2 x 2 x 1/4 inch
argle irons bolted together, All other targets were of simpler
construction. Each consisted of a single panel mounted on a 3-inch
O.D. pipe. Magnesium flares were attached to the uppermost
cerners of the plywood panels of those targets facing the close-in

cam=ra station.
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Two camera stations, a mobile photo-trailer and a movable
concrete bunker, were used on each event and were positioned at
locations indicated by Figure 2.1. In each case, the concrete
bunker was closest to SGZ.

Table 2.1 gives the photographic data for all surface motion -
cameras with the exception of those cameras used to photograph the
flares. The flares were photographed on Linagraph Shellburst (LL.SB)
film at framing speeds of 490 frames per second for ALPHA anci-;li

940 frames per second for CHARLIE,

2.2 DATA ANALYSIS

Target positions were measured on film by one of two techniques,
the choice of which depended upon whether the target panels or the
flares were the principle subjects. Films on which target panels
were tracked were analyzed using a spécially equipped microscope.
The microscope stage with the film attached was manually maneuvered
by vernier screws so that target images passed under a reticle. At
the same time, film coordinates were recorded by a digital stage
position encoder a'nd the coordinates of any target could be automat-
ically transferred to punched cards by operator command. The two
successful flare films were read by an automatic film reader: This
device, described in reference 5, used a precision CRT and photo-
multiplier tube as the basic elements of a unique image-scanning
system. The system was controlled by a digital computer which also

recorded flare position coordinates on magnetic tape. The raw dis-

placement data from both reading techniques were processed by a

10
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computer code which accomplished coordinate transformations,
smoothed the displacement data, and computed velocity for each
target as a function of time. The primary coméuter' code used, the
Surface Motion Analysis (SMA) code (Ref. 5), employs tl';e normal -

curve smoothing operator.
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CHAPTER 3

RESULTS

3.1 PHOTOGRAPHY

The quality of high-speed photography varied between camera
stations for each detonation as well as from detonation to detonation.
Films from the bunker station were superior (because of smaller
fields of view) to films from the trailer station and were used almost
exclusively in the subsequent analyses. Only one trailer station film
on one event, CHARLIE, could be used for quantitative surface
motion measurements.

Photography of the ALFA and CHARLIE detonations was of fair
quality while that of BRAVO and DELTA was poor. In every case,
photography was impaired by large volumes of smoke from the flares.
The sfnoke, in combination with other factors, reduced film contrast,
thereby inducing possible error in the determination of target posi-
tions from frame to frame.

Flare photography for two detonations, ALFA and CHARLIE, was
successful and the resulting films were read on the automatic film
reader. On the ;)ther two detonations, BRAVO and DELTA, a com-
bination of flare smoke and unfavorable lighting reduced film con-
trast to such an extent that automatic film reading was not feasible.

Because of poor photographic resolution, ground motions could
not be measured with the desired degree of accuracy, Short duration

features, such as the initial velocity rise, could not be measured and

13




the characteristic times, such as the time of second phase accelera-
tion, could not be determined with confidence. Consequently, inter-
pretations of results presented in the following paragraphs are

limited to motion features of large magnitude or long duration.

3.2 ALFA DETONATION

Ground movements of the ALFA detonation were recorded by
flare photography at 490 frames per second and by visual target
photography at an approximate framing rate of 69 frames per second.
Both films were from the bunker station and showed movements of
the north-south target array (Figure 2.1).

Velocity histories could not be determined for all targets of the
array. At surface ground zero, an early burst of incandescent gas
obscured the target and the nearby ground surface for approximately
600 msec after the detonation. In addition, the target located ten
feet south of SGZ collapsed at an early time and its motion records
after 100 msec were discarded. At a position 30 feet south of SGZ,
the flare was too dim to register on film.

Velocity histéries of the surface targets, based on data from the
flare film, are shown in Figures 3.1 and 3.2. The distance and dir-
ection from SGZ to the initial position of the target is indicated on
each curve. The vertical velocity at all target positions peaked at
or before 350 msec and, at all but two positions, appeared to result
from two accelerations. Horizontal velocities, in general, reached
a single relative maximum and decreased with time. Table 3.1

summarizes the velocity data.-

14
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The first vertical velocity peak is regarded as the peak spall
velocity. Although the curves suggest that the times of the first
peak ranged from 100 to 200 msec, the actual times, which could
not be measured, were probably much earlier. On DUGOUT, a
row of five 20-ton charges at the same burial depth and in the same
medium as ALFA, the first velocity peak was reached prior to 30
msec 4.

As mentioned previously, the early motion at SGZ could not.be
measured because of a burst of smoke., However, there is sufficient
information to permit an estimate of early SGZ motion. When the
SGZ target first became visible at about 600 msec, its velocity was
115 ft/sec and was decreasing at a rate slightly in excess of one g't,
Assuming that the peak velocity was reached at 350 msec, as was tHé
case for most other targets, a simple extrapolation from 600 msec
back to 350 msec gives an estimated peak velocity of 125 ft/sec.
Assuming further that the spall velocity was 5 ft/sec less than the
peak velocity, the estimated spall velocity is 120 ft/sec.

Figure 3.3, a displacement hodograph of the flares, shows the
trajectories of targets that could be followed. Although the hodograph
does not show it, the mound was fairly symmetric in the plane of the
targets. At approximately 800 msec, low velocity (125 ft/sec) vent-

ing took place on the west side of the mound.

3,3 BRAVO DETONATION
One film at 970 frames per second from the bunker station pro-

vided a view of the target array for the BRAVO detonation oriented

18
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roughly north-south (Figure 2.1). Although the film itself was of
good quality, considerable difficulty was experienced in using it to
measure ground movements. The sun was shining toward the
camera and caused heavy shadows on the target faces. Effects of
these shadows augmeﬁted the effects of flare smoke in causing a
significant loss of photographic resolution. Although all targets of
the array could be followed, the reference target experienced a con-
fusing change in visual appearance at about 200 msec. This change
in appearance, due to the rising mound, caused a loss of velocity
data from 150 to 250 msec.

Vel;tical velocity histories of the BRAVO surface targets are
shown in Figure 3.4 and horizontal velocity histories are shown in
Figure 3.5. At all target positions south of SGZ, and at positions
farther than 45 feet north of SGZ, the vertical velocities reached an
early peak and then decreased with time, At SGZ and at positions
15 and 30 feet north of SGZ, the vertical velocities reached an early
peak and then increased gradually until 350-400 msec which was the
time of venting. Horizontal velocities reached an early relative maxi-
mum and then, typically, increased a second time at about 350-400
msec. Table 3.‘Z is a summary of target velocity data.

Overall mound growth is shown in Figure 3.6, a displacement
hodograph of the visual targets. The mound was reasonably sym-
metrical about a vertical axis for the first 300 msec, but became

strongly asymmetrical to the north after venting at 350 msec.
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3.4 CHARLIE DETONATION

Ground movements resulting from the CHARLIE detonation were
successfully photographed from both camera station's.“ Two fiims
from the bunker station showed movements of the target array ori-
ented roughly east-west, while one film from the trailer station
showed movements of the target array oriented rouéhly north-south.
The azimuthal orientations of the target arrays are shown in ‘
Figure 2.1,

Vertical velocity histories of the east-west targets are shown |
in Figure 3.7 while those of the north-south targets are shown in
Figure 3.8. After the initial velocity peak, no targets near SGZ
exhibited discernible positive acceleration. At some target positions
thirty and forty feet from SGZ, however, there was a slight increase
in velocity until about 400 msec.

Horizontal velocities of targets of the east-west array, shown in
Figure 3.9, reached an early peak and then decreased with time. As
might be expected from the deep charge burial depth, the average
horizontal velocities for CHARLIE were somewhat lower than those
for the other three events,

Table 3.3 is a summary of the velocity data.

Overall mound growth is shown in Figure 3.10, a displacemvent
hodograph for targets of the east-west array. The mound was fairly
'symmetric even though the SGZ target had a horizontal velocity éom-
ponent of about 10 ft/sec east. The mound rose with decreasing
velocity until it reached a maximum height of 153 feet at 3.3 seconds.

It then fell to earth with no discernible venting.
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FIGURE 3,7 Charlie, Vertical Velocity Histories of Surface Targets
(East - West Array)
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FIGURE 3,8 Charlie, Vertical Velocity Histories of Surface Targets
(North - South Array)
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FIGURE 3.9 Charlibek, Horizontél Velocity Histories of Surface Targets
(East - West Array)
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3.5 DELTA DETONATION

One film from the bunker station, ‘taker.l at 990 frames per sec-
ond, provided a motion record for the north-south target array
(Figure 2.1).

As for the BRAVO event, the sun at the time of the DELTA
detonation was shining toward the camera station and there was
considerable smoke over the ground zero area. During this deto-
nation, however, smoke completely obscured the target panels.
Surface motion, therefore, was analyzed by measuring movements
of the flares using the microscope technique. Because the flares
did not produce distinct images on film, data for this event may
include considerable reading errors.

Vertical velocity histories of the flares are shown in Figure
3.11 and horizontal velocity histories are shown in Figure 3,12,

At all target positions, vertical velocities either continuously in-
creased until 200 msec, the time of venkting:‘, or increased a second
time after an initial peak. Horizontal motion near SGZ was charac-
terized by sustained.acceleration. At some positions, the horizpntal
acceleratioﬁ was s1‘:_1;ong“ enough tvo .cause significant flexure of the
target posts which resulted in én apparent early movement toward
SGZ. Table 3.4 is a summary of the velocity data.

Overall mound development is shown in Figure 3,13, a displace-
ment hodograph of the flares. Mound growth was rapid and culminated

in massive high velocity venting at about 200 msec.
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CHAPTER 4

EVALUATION AND CONCLUSIONS

4.1 GENERAL

Inherent in the surface motion recording procedure used in this
study are the measurement of movements of elevated targets rather
than movements of the ground surface itself. The obvious limitations
to this technique are that only a few ground positions may be studied
and that these ground positions must be selected in advance. Less
obvious is the possibility that targets may produce misleading meas-
urements as a result of anomalous motion or physical failure. While
early target failures can be easily detected, it is not possible to deter-
mine if, at late times, the targets are representative of surface par-
ticle motion or have simply toppled over. Even though most targets
probably did not fail, they did not satisfactorily represent early hori-
zontal ground movements because of post flexures.

In addition to the less than satisfactory target performance, the
poor displacement resolution and the coarse data intervals precluded
detailed motio‘n studies., Motion features of potential importance,
such as the direction and duration of spalling, cannot be estimated

from the data.

4.2 COMPARISON OF RESULTS AMONG THE FOUR DETONATIONS
Comprehensive comparison of surface motion characteristics
among the four detonations cannot be obtained. From a qualitative

standpoint, however, the following trends may be noted:
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1. Spalling was the principle agent for the transfer of momentum
to surface particles and this factor became increasingly important
with increasing charge burial depth. The three detonations which
produced apparent craters did, however, show second phase surface
acceleration and venting. For the ALFA detonation, the most deeply
buried of the cratering detonations, gas acceleration was so weak
that the resulting change in surface velocity was negligible. In this
case, the significance of gas acceleration probably lies in its mere
physical presence (as an indicator of an unmeasured subsurface phe-
nomenon) rather than its relative magnitude.

2. One characteristic velocity which could be identified and
measured at most target positions was the vertical component of
spall, If each preshot target position is described by polar coordi-
nates (R, #) in a vertical plane with the origin of coordinates at the
center of the charge, this velocity component is noted to vary in a
regular manner with position. In Figure 4.1, the vertical spall
velocity for each target (or the averaged velocities for targets occupy-
ing symmetrically opposite positions with respect to SGZ) has been
plotted at the radial distanc-e, R, from the center of the charge to the
preshot target position. The dashed contours connect points on the
four curves which correspond to angular positions of 10, 20, 30, and
40 degrees from the vertical. Since the targets were positioned at
arbitrary ground distances from SGZ rather than at regular angular
positions with respect to the vertical, linear interpolation between

data points was used to evaluate velocity at the angular positions
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FIGURE 4,1 Vertical Spall Velocity Versus Position Coordinates (R,0)
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shown. Although none of the curves or contours of Figure 4.1
describe smooth curves because of possible data error, certain
observations can be made. All five data points for the BRAVO
detonation seem to contain a positive systematic velocity error of

6 to 10 ft/sec. If this actually occurred, such an error could be
due only to a systematic error in reading the reference target
position during analysis of the film. As mentioned in chapter three,
difficulties were experienced in measuring the reference target
position on film, but these difficulties were thought to inﬂuence. the
velocity data at times later than the time of spalling. If the BRAVO
data are weighted lightly, shifted downward, or disregarded, the
vertical spall velocity is seen to vary in a regular manner with the
position coordinates (R,60). At a given angular position, the velocity
diminishes with increasing distance at a rate equal to or greater
than the rate of decrease for 6= 0. At a given distance, the velocity

diminishes at an ever increasing rate with increasing angle.

4,3 COMPARISON OF PRE-SCHOONER SGZ VELOCITIES WITH
THOSE OF OTHER DETONATIONS

In order to compare data for detonations of differing yields,
the data must be normalized by some method. For this investigation,
surface velocity at SGZ for any particular detonation is assumed to

be a function of only the cube-root scaled charge burial depth:

v = k(poB/w!/3)
where V is surface velocity (ft/sec),

k is an arbitrary constant, and
(DOB /W1/3)‘ is the scaled burial depth and has the units ft/k’c1
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In Figures 4.2a and 4.2b, the Pre-SCHOONER data have been
plotted with data from other cratering detonations. Figur/e‘: 4, Zﬂa |
shows a plot of SGZ spall velocities versus scaled bubriaul depth and
Figure 4.2b shows a plot of SGZ peak velocitiés prior to venﬁng, |
if any, versus scaled burial depth. Pre-SCHOONER SGZ sp-a'll
velocities are"‘nearly the same as those for high ekplosiire (HE)
detonations in Bearpaw shale and are greater than those for ﬁuclear
detonations in basalt. Pre-SCHOONER SGZ peak velocities are
comparable to, but consistently lower than, SGZ peék velocities fo‘r"

HE detonations in Bearpaw shale.
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CHAPTER 5

RECOMMENDATIONS

One important subsidiary objective of thi.s experimental program
was the development of techniques applicable to future efforts of the
same general nature. The data acquisition system used for Pre- -
SCHOONER surface motion measurements provided considerable
information which has been of assitance in the improvement of the
design of systems for subsequent experiments. Since most of the
refinements which could be suggested on the basis of this experience
have been used on subsequent experiments, recommendation;s here
are "after the fact' and will not be discussed in detail,

Pre-SCHOONER surface targets were not adequately designed
for the stress levels to which they were subjected. Surface targets
must be made short and strong so that target post flexural movements
are small compared to the resolvable displacement. Short targets
with six-inch diameter posts proved adequate for the Pre-SCHOONER
Il experiment 7.

Camera view fields were too wide and the framing rates were
generally too slow., This precluded a study of the strong initial sur-
face accelerations. Subsequent to Pre-SCHOONER, a special SGZ
target (the falling-mass target) has been successfully used on several
experiments including DUGOUT 4. This target system uses a heavy
falling object as a displacement reference and this technique permits

photography with a displacement resolutlon of about. 01 foot. Such

42




displacement resolution, in turn, combined with frame rates on
the order of 5000 frames per second, permits the study of accel-

erations of less than 10 milliseconds duration.
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